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1 Introduction 

The evolvable  avionics  systems  such as the X2000 at 
NASA/JPL are  able  to  have  software  upgrades  during 
a long-life  mission  for  dependability,  performance  and 
functionality  improvement (we call it  “on-board  soft- 
ware  upgrade”) [l]. While  evolvability  itself  can be 
viewed s cn-board  perfective maintenace, it  neces- 
sitates preventive  maintenance  and  corrective  main- 
tenance  for  eliminating or mitigating  potential  error 
conditions  caused by residual  faults  in  an  upgraded 
system  configuration  or  software  version,  and  toler- 
ating  possible  inconsistencies  between the old  and 
new configurations/versions. We collectively view the 
three types  of  mechanisms as on-board maintenance 
and  have  been  investigating  into the development  and 
implementation  issues [ 1, 21. To date,  on-board  soft- 
ware  upgrade  still  requires  to  reboot  the  entire  flight 
software  for  terminating  the old version  and  starting 
the new one.  In  the  Mars  Pathfinder  mission, it took 
two  hours  to  complete  the  patch  process  for  two  small 
changes (in the  flight  software)  made as a result of 
Operational  Readiness  Test,  during  which  the  normal 
functions of the  flight  computer was stopped [3]. The 
costly  performance loss is apparently  unacceptable for 
the future NASA missions. 

Other  types  of  deficiency  in  software  upgrading 
may  even  cause  more  severe  damages  to a mission. 
For  example,  NASA  experienced a gap in fault  pro- 
tection on  April 10, 1981, when a timely  synchroniza- 
tion  check was omitted  after  the  addition of an alter- 
nate  reentry  program [4]. As a result,  the  first  flight  of 
the US space  shuttle  program  was  aborted  19  minutes 
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before  launch.  The  necessity  for  guarded  software  up- 
grading  is  further  testified by the recent  event: At 39 
seconds  after  launch, the Ariane 5 self-destruct  mech- 
anism  activated,  obliterating the rocket;  the  Ariane 5 
was an upgrade  of the Ariane 4. The upgraded  soft- 
ware,  based  on  in  part  of  the  Ariane 4 software,  could 
not  handle the higher  velocities of the Aiane 5 [5]. 

In summary, with  rcspect to long-lifc applications, 
the key factors  that  necessitate  on-board  maintenance 
for  evolvable  software  are: 1) potential loss of sys- 
tem  availability,  normal  mission  functions,  and  mes- 
sage/data  during  uploading  and  version  switching; 2) 
possible  gaps  between the old and  new software  ver- 
sions  with  respect  to  their  computation  algorithms, 
or fault  protection  mechanisms;  and 3) residual  de- 
sign  faults  introduced  by  the  addition  or  modification 
of  an spacecraftkcience function.  In this paper,  we 
describe a methodology,  called  guarded  software  up- 
grading (GSU), that enables seamless  and  dependable 
on-board  software  upgrading  and feasib!e for middle- 
ware  implementation. 

The error  containment  and  protection  methods  for 
GSU are based  on  checkpointing,  message  logging 
and  rollbackholl-forward  recovery  techniques [6, 7, 
8, 91 that  are  adapted  and  extended  to  accommodate 
the requirements  from the X2000 architecture and ap- 
plications.  The  same  methodology  can be applied  to 
the  two  stages  of  guarded  software  upgrading,  namely, 
on-board  validation  and  guarded  operation, as well as 
version  switching  for the transition  from  the  first  stage 
to  the  second  stage,  to  minimize  performance  degra- 
dation  and  prevent  message/data  loss. 

The remainder of the  paper is organized as follows. 
Section 2 provides a scenario-based  description of our 
GSU methodology,  followed  by Section 3 presents a 
middleware  architecture  for  the GSU methodology  re- 
alization.  The  concluding  section  discusses  the signif- 
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icance of this  effort  and  our  plan  for  the  subsequent 
research. 

2 Guarded Software Upgrading 

2.1 General Approach 

The following  methodology  design  is  based on the 
X2000 architecture  configuration  with  three  proces- 
sors, two of which  are  required  to  perform  space- 
crawscience functions  during a non-critical  mission 
phase.  With the GSU methodology, the software 
aimed  for  upgrade  will go through two stages: 

After the upgraded  software  version  enters its ac- 
tual operational  phase,  the  computation  results of the 
old  version will be suppressed  although  its  execution 
continues. When  an error  is  detected in the  upgraded 
version,  the  old  version will take  over  the  operation 
based  on  checkpointing  and  message  logging. 

Version  switching 

In  the  first  stage, on-board validation, we  con- 
firm,  through  on-board test runs, a software  ver- 
sion's  ability  to  perform its functions  complying 
with  the  mission  requirements  under the current 
conditions  of the spaceborne  system  and  environ- 
ment. 

In the second  stage, guarded operation, we al- 
low the new  software  version  to  actually  perform 
its science  or  spacecraft  functions  for the mission 
(version  switching  after  confidence is established 
through  on-board  validation),  guarded  by  the old 
version  and a set of error  containment  and  pro- 
tection  mechanisms. 

As shown  in Figure 1 during the validation  stage, 
the upgraded  version is executed  concurrently  with 
the old  version  and its computation  results  are  sup- 
pressed but are checked  by  an  acceptance  test or com- 
pared  with the results from the old  version;  at this 
stage, checkpointing is used to  enable  the  upgraded 
version  to  recover  from a detected  error  by  restart- 
ing  from a state copied  from the old  version,  based 
on checkpointing. 

Since the  checkpointing-based  error  containment 
and  protection  technique  facilitates  the  maintenance 
of  an  on-board  error  log  and  classification  of  error 
events,  those  error  data  can  be  downlinked  to the 
ground  to  facilitate  statistical  modeling  and  heuristic 
trend  analysis. This in turn,  will  be  used  to  support 
decision  making  on  whether  and when to  switch the 
versions.  During  version switching, message  logging 
enables  the  avoidance of missing  messages  and  redun- 
dant  messages. 

Stage 1 : Stage 2: 
On-board  validation Guarded  operaton 

Figure 1 : Two-Stage  Approach 

To facilitate  the  description of our checkpointing 
and  messaging  logging  schemes  for  error  containment 
and  recovery,  we  introduce  the  following  notation: 

Void The process  corresponding  to  the 
software  version  before an  upgrade. 

Vnew The process  corresponding  to the 
upgraded  software  version. 

PC The  cooperative  process  (another 
program  in  the  distributed  system) 
which  runs  on  the  third  processor 
and  interacts  with Void and/or Vnew. 

Further, we  call the version in use  (i.e.,  its  outgoing 
messages  are  actually  sent  to a device or a cooperative 
process) an active version, and  refer the version  which 
executes  with  its  outgoing  messages  suppressed as a 
shad0 w version. 

The algorithms  are  message  driven in the  sense 
that,  checkpointing  and  message  logging are per- 
formed  before  or  after a process  sends  or  receives a 
message. An acceptance  test is performed  for  mes- 
sages  to  be  sent  to a device  (or  anywhere  external  to 
the  computing  system).  More  precisely,  acceptance 
test  is  carried  out  after a process  generates a message 
and  before it is transmitted. The following  are  our  ba- 
sic  assumptions: 

1 .  Messages  between  processes  and  between a pro- 
cess and a device are functions of input data (re- 
ceived by a process  from  incoming  messages  or 
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from  instrument  readings).  For  the  same input V",W 

data, the output  data (message) from V,,, and Checks  correctness of every message it intends 
Void shall be equivalent. to  send by applying  acceptance  test and  logs  the 
An earlier  version of the  software  and  the soft- message  with a sequence  number,  during  its  exe- 

ware  comprising  the  cooperative  process  are  cution as a shadow. 
more  reliable  than  the  the  upgraded  version.  Deletes a message  from  the  log  after  it  receives 

J.  An erroneous state of a process is likely  to  affect 
the correctness of its outgoing  messages,  while 
an erroneous  message  received  by an applica- 
tion  will  result in an erroneous state of the cor- 
responding  process.  Therefore,  the  correctness 
of checkpoints and messages  can be traced  and 
analyzed  for  rollback  or  roll-forward  recovery. 

To  implement  the  methodology,  we  design a mid- 
dleware  architecture,  the  GSU  Middleware,  which en- 
ables the checkpointing and message  logging  mecha- 
nisms to be smsparent to the  programmer.  For exam- 
ple, the GSU  middleware  provides a message  sending 
service that  can be invoked  by  an application  software 
- send ( ) . This application  invokable  service  may 
involve  one  or  some  combination of the following: 
1) actual  message  transmission, 2) message  suppres- 
sion, 3) message  logging, 4) taking a checkpoint,  and 
5) performing  acceptance  test.  When send ( ) is in- 
voked  by  an application,  the  GSU  Middleware selects 
action(s)  from  the  above  set  based  on  (see  Section 3 
for more  design  details): 

0 Execution  context (in  which the message is sent): 

- Version switch 
- On-board  validation 
- Guarded  operation 

0 Execution process (that sends the  message): 

- Active  version  process 
- Shadow  version  process 
- Cooperative  process 

2.2 On-Board  Validation  and  Seamless Ver- 
sion Switching 

During  on-board  validation  and  seamless  version 
switching, Vnew is  the  shadow  process  and Void is  the 
active  process;  different  processes in the  system  per- 
form  checkpointing and  message  logging as follows. 
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the  notification  from Void that  indicates  the  cor- 
responding  message  (identified by message se- 
quence  number)  has  and  been  sent (by Void). 

Takes a checkpoint  after it  receives a message 
from PC and before  passing  it to the  application. 

Upon  version  switching,  it  becomes  the  active 
version  and the logged  messages  are  sent to PC 
or  devices,  if its message  log is not  empty. 

e Vold 

Actually  sends out the  messages  to PC and de- 
vices.  When  it  sends a message, it l) sends a 
copy of the  message  together  with  the  message 
sequence  number  to PC or a device; and 2) sends 
the message  sequence  number  and a copy of its 
state,  or just the former,  to Vnew. Sending  its 
complete  state  provides  another  means  for Vnew 
to  check  its  correctness  and  enables  the  recov- 
ery upon error  detection (at the cost of  additional 
data transmission). 

0 PC 
Takes a checkpoint  which  saves  the  message se- 
quence  number  after it receives a message  from 
Void and  before  passing  it  to the application. 

When  it  sends a message  to Void, it dso sends a 
COPY of the  message  to Vnew, such  that Vnew can 
execute in the same control flow as Void does. 

When  it  receives  messages  from VneW after  ver- 
sion  switching,  it  checks  whether a message  is  re- 
dundant by comparing the sequence  number  with 
that of the  latest  message  received  from Void. 

Figure 2 illustrates the scenario in which Vnew di- 
rectly goes to  normal  operation  ("roll  forward"),  upon 
version  switching,  without  re-sending  the  suppressed 
messages  from  its  message  log or suppressing any 
newly generated  messages. This is because  the  global 
state satisfies  the  consistency  property (as defined in 
[9]) when  version  switching is initiated. 



Verslon  switch Verslon  switch 

PC I- 

I Checkpointing "-+ Actual  interaction 

0 Checkpointing with 
----- * Supressed interaction 

message logging _ _ _ _ _ _ _  * Message  notification 

Figure 2: Version  Switch  without  Message  Re-send  or 
Suppression 

Figure 3 depicts  the scenario of  version  switching 
(for the  transition  from  on-board  validation to guarded 
operation)  in  which Vne, needs to  re-send the sup- 
pressed  message m2 from its message  log,  upon  ver- 
sion  switching. And the message  will  undergo an 
acceptance  test  before  transmission, as the version 
switching  brings  the  system  to the guarded  operation 
stage.  In this case,  message-logging  (of Vnew) assures 
recoverability (as defined in [9]) and  prevents the sys- 
tem  from  losing  messages  during  upgrade. 

Figure 4 describes the scenario in which Vnew 
needs  to  suppress  message  m2,  after  version  switching 
and  when it executes to the  point  where the message 
is generated.  In this case,  message  sequence  number 
plays  a  crucial  role  for  avoidance of redundant  mes- 
sages. 

Version  switch 

vold 1 
! 
I 

I Checkpointing - Actual  interaction 

0 Checkpointing with 
----- * Supressad  interaction 

message lowing _ _ _ _ _ _ _  .c Message  notiicatbn 

Figure 3: Version Switch  with  Message  Re-send 

2.3 Guarded  Operation 

During  guarded  operation, Vnew becomes  the  active 
and Void becomes  the  shadow;  different  processes in 
the system  perform  checkpointing  and  message log- 

I Checkpointing - Actual  interaction 

0 Checkpointing with 
----- * Supressed  interaction 

message logging _._____ * Message notification 

Figure 4: Version Switch  with  Message  Suppression 

ging as follows. 

vnew 

Performs  acceptance  test  when  it  needs  to  send 
a  message  to  a  device.  When  it  sends  a  message 
to  device  or PC, it sends the message  sequence 
number  to Void. 

Void 

Checks  the  correctness  of  every  message  it  in- 
tends  to  send  using  acceptance  test  and logs it 
with  a  message  sequence  number,  during its exe- 
cution as a  shadow. 

Deletes  from  the  log  the  messages  with  sequence 
numbers  smaller  or  equal  to the sequence  number 
piggybacked  on  the  latest  message  from PC that 
identifies  the  last  message  it  received  from Vnew 
before  its  most  recent  successful  acceptance  test. 

Takes  a  checkpoint  after  it  receives  a  message 
from  PC  and  before  passing  it to the  application. 

Upon  error  recovery,  it  becomes the active  ver- 
sion  and  the  logged  messages are sent  to  PC  or 
devices, if  its  message log is not  empty. 

P C  
Performs  acceptance  test on the message it in- 
tends  to  send  to  a  device  and  takes  a  checkpoint 
immediately  after  it  sendssout  the  message  which 
passes  acceptance  test. 

Takes  a  checkpoint  which  saves  the  message se- 
quence  number  after  it  receives  a  message  from 
Vnew and  before  passing  it  to  the  application. 

When it sends  a  message  to Vne,, it also sends 
a  copy of the  message  to Void, such  that Void 

4 



can  execute in the  same  data and control flows 
as V,,, does. 

Figure 5 illustrates  the  scenario in which V,,, fails 
on  acceptance T2 and Void will  subsequently  take  over 
without  rollback,  re-sending  logged  messages or sup- 
pressing newly  generated  messages.  This is because 
the  global  state,  at the time  when Vne, fails  the  accep- 
tance  test T2, satisfies  the  consistency  property. 

Figure 5 :  Roll Faward without AMessage Re-send or 
Suppression 

Figure 6 illustrates the scenario  in  which Vnew fails 
on acceptance T3 and Void will  subsequently 1) take 
over  without  rollback,  and 2) re-send the suppressed 
message  that  passed  acceptance  test  T2.  Again,  mes- 
sage logging  at the sender's side assures  recoverabil- 
i t y .  

t t 

1 Checkpointing - Actual  interaction 

0 Checkpointing with 
----- D Supressed  interactim 

message logging _ _ _ _ _ _ _  - Message  notification 

@ Passon AT 

@ No-pass on AT 

Figure 6:  Roll  Forward  with  Message  Re-send 

Figure 7 illustrates  the  scenario  (at  the  guarded  op- 
eration  stage) in which V,, fails on acceptance T4. 
Since the  global state that  comprises  the  process  states 
of Void and PC at  the time of the  failure  satisfies  the 
consistency  property (as defined in [9]), Void will  sub- 
sequently 1 )  take  over  the  control  without  rollback, 

and 2) suppress  the  message  that  equivalent to the first 
message of V,,, after  version  switching  and  when it 
executes  to  the  point  where  the  message  is  generated. 
Again,  message  sequence  number  enables  the  avoid- 
ance of  redundant  messages. 

4 4 

Vnew I x lc 

Checkpointing - Actual  interaction 
Checkpointing with ----- D Supressed  interaction 

0 message logging _ _ _ _ _ _ _  * Message notification 
(AT) Pass on AT 

8 No-pass on AT 

Figure 7: Roll  Forward  with  Message  Suppression 

Figure 8 illustrates the scenario in  which V,,, 
fails on acceptance T3 and Void rolls  back  to  check- 
point B3, upon  version  switching,  without  sending  out 
logged  messages  or  suppressing  any  newly  generated 
messages;  and PC rolls  back  to  checkpoint C3. Note 
that B3 and C3 comprise the most  recent  recoverable 
consistent  system state [LO]. 

1 Checkpointing - Actual  interaction 

0 Checkpointing with 
----- t Supressed  interaction 

message logging _ _ _ _ _ _ _  * Message  notitication 

(Ar> Passon AT 

@ No-pass m AT 

Figure 8: Rollback  Recovery  without  Message  Re- 
Send  or  Suppression 

Figure 9 depicts  the  scenario (at the  guarded  op- 
eration stage) in which V,,, fails on acceptance T2. 
Upon  the  version  switching  triggered  by  the  failure, 
Void rolls  back  to  checkpoint B4 and  needs  to  re-send 
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message  m2,  while PC rolls  back to checkpoint C3. 
In this  case, B4 and C3 comprise the  most  recent  re- 
coverable  consistent  system state (as defined in [ lo]). 
And similar to  the  version switchng case and  roll- 
forward  case,  message  logging  assures  recoverability. 

t 

I Checkpointing - Actual  interaction 

0 Checkpointing with 
-----* Supressed  interaction 

message logging _ _ _ _ _ _ _  c Message  notiication 
(AT) Pass on AT 

@ No-pass on AT 

Figure 9: Rollback  Recovery  with  Message  Re-Send 

Figure 10 describes  the  scenario in  which V,, fails 
on acceptance  T3  and Void rolls back  to  checkpoint 
B3,  and  needs  to  suppress  message  m2  and the first 
message  to  the  device,  after  version  switching  and 
when it executes  to the point where the  messages are 
generated; PC rolls  back  to  checkpoint  C3.  Here,  B3 
and C3 comprise  the  most  recent  recoverable  consis- 
tent system  state.  And  similar  to the version  switching 
case and  roll-forward  case,  message  sequence  num- 
ber  plays a crucial role for the avoidance of redundant 
messages. 

c1 

I Checkpointing - Actual  interaction 

0 Checkpdnting mh 
----- * Supressed  interaction 

message bgging _ _ _ _ _ _ _  c Message notification 

(AT) pass on^^ 

f@ No-pass on AT 

Figure 10: Rollback  Recovery  with  Message  Suppres- 
sion 

3 GSU Middleware 

Figure 11 shows  the  relationships  among  the  major 
components  that  comprise  the GSU Middleware  ar- 
chitecture,  namely, how the  invokable  services,  active 
agents and  on-board  tools collaborate to  accomplish 
guarded  software  upgrading. 

Applications: 
spacecraWscience functions 

t 

vxworks 

Figure 1 1: GSU Middleware  Architecture 

As  mentioned  earlier,  invocations of the  invokable 
services send ( ) and receive ( ) by an application 
program may result in different  activities,  depending 
upon the role  of  the  invoking  process  and  the  execu- 
tion  environment, as described in  Tables 1 and 2. 

As  shown  in  Figure  11, the invokable  services  are 
supported by a group of active  agents,  namely, 

Message-log  maintenance  agent: Responsible 
for  deleting  the  messages  that  are no longer 
necessary  to  remain in the  message log of a 
process. 

Checkpoint maintenance  agent: Responsible 
for  deleting  the  checkpoint  that is no longer 
necessary  to be maintained. 

Error-detection agent: Responsible for carrying  out 
acceptance  test  and  raising  the  error flag  upon a 
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Table 1: Invokabie  Services  During  On-Board  Validation 

Void PC Vnew 

send ( 1 Sends the message to both Void Suppresses the  message and Actually transmits a message 
and sends the  message se- saves it in  the  message  log.  and Vnew. 
quence number to Vnew (mes- 
sage notification). 

, receive ( ) Takes a checkpoint before pass- Saves the message sequence Passes it to application directly. 
number if it is a message no- 
tification from Void; otherwise 

ing it to the application. 

it to aodication. 
message logging, and 2) passes 
1 )  takes a checkpoint and does 

failed  acceptance  test. 

Error-recovery agent: Responsible  for  monitoring 
the error  flags  and  making  decision on recovery 
mechanisms  upon a failed  acceptance  test,  e.g., 
decisions on roll-forward or rollback, the roll- 
back distance for each  process,  and  whether  mes- 
sage suppression  or  re-sending is required. 

Error-log agent: Responsible for the maintenance  of 
an  on-board  error  log  and  classification  of  error 
events/symptoms  (e.g.,  single  or  recurrent  error 
type)  for  downlinking to the ground  to  facilitate 
statistical  modeling  and  heuristic  trend  analysis. 

The agents  for  checkpoint  and  message-log  mainte- 
nance are important  for  cost-effective  memory  utiliza- 
tion  and  assuring  only  the  information  necessary  for 
version  switching  or  error  recovery  are  maintained. 
Specifically,  for the on-board  validation  stage  during 
which V,, runs as a shadow  and  thus its error will 
not contaminate other  processes, Vnew needs only  to 
keep its most  recent  checkpoint  for  the  rollback  re- 
covery  if an error is detected;  while PC needs  only  to 
keep  its  most  recent  checkpoint  for  keeping  track  of 
incoming  messages  and  rejecting  redundant  messages 
after  version  switching. As to  the  guarded  operation 
stage during  which  errors  of the active Vnew will con- 
taminate  other  processes,  when V,,, or PC passes an 
acceptance  test,  all  the  processes need only  to  keep 
their  most  recent  checkpoints;  when Void passes an 
acceptance  test,  the  previous  checkpoints of its  own 
and  those of PC taken  prior  to its most  recent  message 
received by Void (that has  proved  to  be  correct  via  the 

acceptance  test of Void) can  be  deleted,  excluding  the 
most  recent  checkpoint. 

4 Summary and Future Work 

Aimed  at  avoiding  or  minimizing  mission  perfor- 
mance  degradation due to software  upgrading  activi- 
ties and due to system  failure  caused by residual  faults 
in  an  upgraded  version,  we  have  proposed  an  approach 
to  guarded  software  upgrading. Our approach  em- 
phasizes 1) the  utilization of nondedicated  or  inherent 
system  resource  redundancies  such as an earlier soft- 
ware  version  and a processor  that  otherwise  would  be 
idle in  the  mission phase during  which  software up- 
grading  activities are conducted,  and 2 )  low-cost  ef- 
ficient  error  containment  and  protection  mechanisms 
based  on adaptatiodextension of the enabling  tech- 
nologies  such as checkpointing  and  message  logging. 

In  addition  to NASA's X2000 missions, the GSU 
methods  could  benefit a wide  variety  of  commercial 
application  domains. In particular, 1)  the  guarded 
software  upgrading  techniques  will  be  useful  for  many 
other  applications  which  are  subject  to  frequent soft- 
ware  upgrading  and  require  high  availability  and/or 
safety,  such as Internet  services,  transportation  sys- 
tems,  airline  reservation  systems,  telephone  systems 
and  medical  systems,  and 2) the  methods  of  utilizing 
inherent,  non-dedicated  resource  redundancies  and 
our low-cost  flexible error containment  and  recovery 
algorithms will enable the transferring of the  state-of- 
the-art  fault  tolerance  techniques  from  research  do- 
main to real  applications.  Currently,  we  are  formaliz- 
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Table 2: Invokable Services During  Guarded  Operation 

send ( ) 

receive ( 1  

Suppresses the message and 
saves it in the message log; if 
the message destination is a de- 
vice, performs acceptance test 
before logging the message. 

If it is a message notification 
from Vnew, save the message 
sequence number; otherwise 1 )  
takes a checkpoint and does 
message logging, and 2) passes 
it to application. 

Vnew 
Actually transmits a message 
and sends the message se- 
quence number to Void; if the 
message destination is a device, 
perfoms acceptance test before 
sending the message. 
Passes it to application directly. 

ing the error  containment  and  protection  methods  and 
conducting  formal  algorithm  verifications. We also 
plan  to  carry  out  a  series  of case studies  based  on an- 
alytic  methods  and  testbed  experiments  to  investigate 
the effectiveness  of  the GSU methodology  for  a vari- 
ety of  software  applications  in space systems. 

References 

[l] L. Alkalai  and  A. T. Tai,  “Long-life  deep-space 
applications,” IEEE Computer, vol.  31,  pp.  37- 
38, Apr.  1998. 

[2] A.  T.  Tai  and L.  Alkalai,  “On-board  maintenance 
for  long-life  systems,” in Proceedings of the 
IEEE Workshop  on Application-Specific SOB- 
ware Engineering  and  Technology (ASSET’98), 
(Richardson,  TX),  pp.  69-74,  Apr.  1998. 

[3] R.  Baalke,  Office  of the Flight Operations Man- 
ager,  “Mars  Pathfinder  update,”  Mars  Pathfinder 
Weekly Status  Report, Jet Propulsion  Lab- 
oratory,  California Institute of  Technology, 
Pasadena,  CA,  June  1997. 

[4] A. Aviiienis,  “Towards  systematic  design  of 
fault-tolerant  systems,” IEEE Computer, vol. 30, 
pp. 51-58,  Apr.  1997. 

[5] J. L.  Lions  (The  Chairman of the  Board), 
ARIANE 5 Flight 501 Failure, July  1996. 
URL=ht tp : / / s spgl .bnsc . r l . ac .uk  
/Share/ISTP/ar ianeSr .htm.  

PC 
If the destination is Vn,,, sends 
the message to both Void and 
Vnew; if the message destina- 
tion is a device, performs ac- 
ceptance test before sending the 
message. 
Takes a checkpoint before pass- 
ing it to the application. 

[6] B. Randell,  “System  structure  for  software  fault 
tolerance,” IEEE Trans.  Software Engineering, 
vol. SE-1, pp.  220-232, June 1975. 

[7] K. S. Tso  and  A. Aviiienis, “Community  error 
recovery in N-version  software:  A  design  study 
with experimentation,” in Digest of the  17th  An- 
nual  International Symposium on  Fault-Tolerant 
Computing, (Pittsburgh,  PA),  pp.  127-133,  July 
1987. 

[8] Y. M. Wang et al., “Checkpointing  and  its  appli- 
cations,” in Digest of the 25th Annual Intema- 
tional  Symposium  on  Fault-Tolerant Computing, 
(Pasadena,  CA),  pp.  22-31, June 1995. 

[9] N.  Neves  and W. K. Fuchs, “Coordinated  check- 
pointing  without  direct  coordination,’’ in Pro- 
ceedings of the  3rd  IEEE Infernational Com- 
puter Performance  and Dependability Sympo- 
sium, (Durham,  NC), Sept. 1998. 

[ 101 E. N. Elnozahy,  D.  B.  Johnson,  and Y.-M. 
Wang, “A survey  of  rollback-recovery  protocols 
in message-passing  systems,”  Technical  Report 
CMU-CS-96-181, School of Computer  Science, 
Carnegie  Mellon  University,  Pittsburgh, PA, Oct. 
1996. 

8 

URL=http://sspgl.bnsc.rl.ac.uk

